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A new model is proposed for rapid evaluation of the degree of long-chain branching in polymers, which 
correlates the intrinsic viscosity and the molecular weight. Intrinsic viscosity is expressed as a simple inverse 
tangent function of molecular weight. The model is based on the observation of theological behaviour of 
polymer melts and solutions. It can describe the intrinsic viscosity behaviour over a wider range than the 
Mark-Houwink equation. This model does not use trial and error procedure to decide the threshold 
molecular weight where the intrinsic viscosity starts to deviate from the Mark-Houwink relation. Calculation 
by the proposed model of the long-chain branching frequency of low density polyethylene shows good 
agreement with experimental results in the literature. 
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INTRODUCTION 

The degree of long-chain branching, along with molecular 
weight and chemical composition, is one of the funda- 
mental parameters needed to fully describe polymer 
structure and melt-processing properties 1. Over the years 
its importance has become increasingly apparent. Since 
the fundamental work of Zimm and Stockmayer 2, the 
influence of long-chain branching on polymer properties 
has been studied extensively 3. Long-chain branching can 
be determined experimentally by gel-permeation chroma- 
tography (g.p.c.) and combined methods. The basis for 
all g.p.c.-related methods is the universal retention 
volume-hydrodynamic volume relation (universal cali- 
bration) proposed by Grubisic et al. 4. However, branched 
molecules have a smaller hydrodynamic volume than 
linear molecules and thus will elute in g.p.c, with lower 
molecular weight linear molecules. So its true molecular 
weight distribution (MWD) is different from that of 
the linear molecules 5. Specifically, the g.p.c.-viscometry 
method which has been most widely used has the problem 
of establishing the intrinsic viscosity-molecular weight 
relationship suitable for a particular branched resin. 

The most prevailing relationship between the intrinsic 
viscosity and the molecular weight is the simple Mark- 
Houwink equation, which presents the intrinsic viscosity 
as a power-law function of molecular weight. However, 
intrinsic viscosity behaviour departs seriously from the 
Mark-Houwink equation at both low and very high 
molecular weights 1. Also, the behaviour of branched 
polymers does not always follow the relation. One 
approach to solve this problem of the Mark-Houwink 
equation is the Ram-Miltz procedure, which is based 
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on the assumption that the relationship between the 
intrinsic viscosity and molecular weight for a branched 
polymer can be described by a polynomial expression 
when the molecular weight is above a certain threshold 
value, Mo. However, Mo is not an intrinsic property of 
the polymer. It can be markedly different from the same 
polymer prepared by different synthetic methods. Also, 
its determination by numerical trial and error procedure 
requires tedious computer iteration. 

For more accurate and reliable analysis, we need a 
new model that can express the behaviour of polymer 
solutions and from which we can obtain the long-chain 
branching number more easily. The purpose of this paper 
is to report a simple general model which can depict the 
behaviour of intrinsic viscosity for both linear and 
branched polymers over a very wide range of molecular 
weight. We apply this model to the characterization of 
branched polymers and investigate its accuracy and 
applicability. 

THEORETICAL CONSIDERATIONS 

The viscosity of a dilute polymer solution depends on 
the nature of the polymer and the solvent, the concen- 
tration of the polymer, its average molecular mass and 
molecular mass distribution, the temperature and the rate 
of deformation 1. The most important characteristic 
quantity in a very dilute solution under low deformation 
rate is the intrinsic viscosity (the limiting viscosity 
number), [q] defined as: 

[q]= lira q l , 2 - q l  (I) 
c--*O ~]1 C 
G ~ O  

where r/1 and/~1,2 are the respective viscosities of the pure 
solvent and the solution, c is the concentration, and G 
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Figure 1 The Mark-Houwink relation for a given polymer in solution: 
A ( - - ) ,  real intrinsic viscosity; B (- -), prediction by the Mark-Houwink 
relation 

is the shear gradient. The intrinsic viscosity is related to 
the dimension of the isolated polymer molecule and it 
can be presented as a function of molecular weight by 
the Mark-Houwink relation, which can be derived 
theoretically: 

It/] = K M  ~ (2) 

where M is the molecular weight, and K and ct are 
constants 1. However, a plot of log [~/] versus log M for 
many polymer solutions shows deviation from the linear 
relationship at both low and very high molecular weights 
(Figure 1). In the low molecular weight region, it is 
common to find • ~0.5 for flexible chains despite the use 
of good solvents. The failure of the Mark-Houwink 
relationship to predict behaviour at low molecular weight 
is a consequence of the non-Gaussian character of short 
flexible chains, and at very high molecular weight is due 
to hydrodynamic interaction 7. So, when applying data 
reported in the literature to the Mark-Houwink relation- 
ship, attention must be given to the nature of the 
calibration. Also, as mentioned above, the dilute solution 
properties of branched polymers differ from those of 
linear polymers of the same composition. The effect of 
branching is to increase the segment density within the 
molecular coil. Thus a branched molecule occupies a 
smaller volume and has a lower intrinsic viscosity than 
a similar linear molecule of the same molecular weight. 
For the characterization of branched polymers using the 
universal calibration, therefore, higher order terms of log 
M should be adopted to correct for the lower viscosity 
of branched polymers 8. 

Figure 2 shows the plot of log [~/] versus log M of a 
long-chain branched low density polyethylene (LDPE) 
sample. From Figures 1 and 2, we can see that curves of 
log[t/] versus log M have a sigmoidal shape. From 
rheological considerations, we have already proposed the 
following empirical equation 9 for shear viscosity, ~/: 

log r/= C 1 tan-  ~ (log 2,9) + C2 (3) 

where ~ is the shear rate, 2, is the relaxation time constant, 
and both C1 and C2 are constants. This model for the 
shear viscosity was proposed to describe the non-linear 
behaviour of polymer melts and solutions with few 
parameters and applied to the first normal stress 
coefficient prediction using Wagner's relationship. Its 
prediction was compared with the published e_xperi- 

mental data of polymer melts and solutions 9. Its 
non-linear form was shown to correlate the model very 
well with experimental data over many decades of shear 
rate. This model has some additional merits when 
compared to the finite relaxation time series approach 
of Wagner, i.e. it has fewer parameters and it does not 
show any numerical artefacts in the prediction of the first 
normal stress coefficient function. The proposed model 
also fits the elongational viscosity very well. The current 
model is quite compact in its form and useful for simple 
modelling and simulation (see ref. 9 for details). 

From molecular theory it is known that the relaxation 
time is proportional to the molecular weight of the 
polymer in ideal solutions (it scales with the first power 
of the molecular weight up to some characteristic 
molecular weight, after which it scales with the cubic (or, 
more precisely, 3.4) power) 1°. Therefore, when the de- 
formation rate is so low that its effects are negligible and 
the solution concentration is very dilute, we can expect 
a relationship between log [r/] and log M to be as follows: 

log r;/] = m l tan-  1 [log (M/m2) ] + m 3 (4) 

provided that a linear relationship exists between the 
intrinsic viscosity and the shear viscosity. In equation (4), 
mr, m 2 and m a are fitting parameters: parameter m 1 is 
the span of intrinsic viscosity values at the limit of high 
and low molecular weight multiplied by (2/~); parameter 
m 2 is the amount of horizontal shift of the inverse tangent 
function curve and m3 is the amount of vertical shift. 
These parameters appear because the centre of the 
viscosity function is not at the origin. As shown later, 
equation (4) is actually so versatile that it is applicable 
to a wider range of molecular weight than expected owing 
to its non-linear nature and sigmoidal shape of the inverse 
tangent function. 

If equation (4) is applicable both to linear polymer 
solutions and branched polymer solutions, we can use it for 
branched polymer characterization as well. In branched 
polymer characterization, the long-chain branching fre- 
quency is one of the most important factors. The 
estimation of the long-chain branching frequency in 
LDPE has been achieved by many workers. However, 
large discordances in the reported results are observed, 
proceeding mainly from the various assumptions admitted 
a priori. In every case, the starting point is the structure 
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Figure 2 Plot of log[r/l-log M for the LDPE sample: C), experimental 
viscosity; - - ,  the Mark-Houwink relation for linear polyethylene from 
ref. 4 
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Figure 3 Correlation of the current model for intrinsic viscosity of 
linear polyethylene presented as following the Mark-Houwink relation 
([q) and long-chain branched polyethylene (O). Model parameters are 
presented in Table 1 
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Figure 4 Molecular weight dependence of intrinsic viscosity (dl g- 1): 
r-q, experimental data from ref. 15 for solutions of polystyrene in 
tetrahydrofuran at 25°C; O, experimental data from ref. 16 for solutions 
of poly (methyl methacrylate) in benzene at 30°C; A, experimental data 
from ref. 17 for solutions of poly(I3-#-hydroxybutyrate) in chloroform 
at 30°C; - - ,  the current model. Parameter values are presented in 
Table 1 

parameter g' defined as: 

g,= [q]b < 1 (5) 

where [r/]b is the intrinsic viscosity of the branched species 
and [r/]L is that of the linear species with the same 
molecular weight Mb. Let us assume that [t/] b and [q]L 
follow the relationship represented as equation (4). It is 
then necessary to assume a relationship between g' and 
the ratio g of the mean square radius of gyration <R~> of 
the same species: 

<R~>b 
(6) 

g = <R~> L 

g and g' are interrelated by: 

9' =gx (7) 

where the exponent x is dependent on the type of 
branches and has a value between 0.5 and 1.5 (refs 
2,11-14). For randomly branched polymers, x is 0.5, the 
theoretical value of Zimm and Kilb 11. In case of LDPE 3, 

x is known to be 1.2 + 0.2. Finally, the number of branches 
per macromolecule, n, is obtained by one of the 
Zimm-Stockmayer relationships2; the two most often 
encountered are: 

(8) 

6 f l / ' 2+n~ ' /2 '  F(2+n)l12+n1/2] 1} (9) 

But it was revealed by Lecacheux et al. 8 that the results 
are not very different with regard to the expected 
precision. When n is greater than 5, the following 
approximate equation is also accurate within 3% error: 

2 \ n /  2n 

RESULTS AND DISCUSSION 

Experimental measurements of intrinsic viscosity of linear 
and branched polyethylenes were reported by Lecacheux 
et al. s. Figure 3 shows the fitting of the intrinsic viscosity 
of linear polyethylene and branched polyethylene using 
equation (4). The current model correlates very well with 
both. It also agrees well with the Mark-Houwink 
relationship for linear polyethylene. Figures 4 and 5 show 
fittings of the current model to other experimental data 
reported in the literature. The sigmoidal nature of the 
inverse tangent function in equation (4) shows very 
smooth fittings even at low molecular weight. As shown 
in the figures of references 15-18, the Mark-Houwink 
equation could not cover the entire molecular weight 
range in these figures. All constant values, ml, m2 and 
m3, of the curves are presented in Table 1. 

Figure 6 shows the g' calculation by the current model 
and the calculated results of Lecacheux et al. using the 
Mark-Houwink equation for the linear polymer and a 
third-degree polynomial regression for the branched 
polymers. The agreement is quite satisfactory, although 
small deviations occur at very high molecular weight. 
These may be due to the loss of sensitivity inherent in 
the molecular size detectors for the experiment, as well 
as to the logarithmic relation, since we used the following 
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Figure 5 Molecular weight dependence of intrinsic viscosity (dl g-1): 
O, experimental points from ref. 18 for solutions of polystyrene in CCI 4 
at 25°C; r-q, experimental points from ref. 18 for solutions of polystyrene 
in CHCI 3 at 25°C; - - ,  the current model predictions. Parameter values 
are presented in Table 1 
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Table 1 Parameter values for the inverse tangent model: logic/] 
=m, tan- 1[log(M/m2)] +m 3 

Curve fitting m a m2 m3 

Figure 3. [] 0.1562 1.945 -5.032 53 
Figure 3, 0 0.1456 6.1747 -2.424 53 
Figure 4, [] 0.0866 13.976 -2.1968 
Figure 4, • 0.1190 10.893 - 1.9572 
Figure 4, A 0.1065 8.9178 -2.8143 
Figure 5, © 0.0047 342.137 - 1.45706 
Figure 5, [] 0.0084 179.5447 - 1.644 
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Figure 6 Plot of structure parameter g' versus molecular weight: , 
calculation by Lecacheux et al. s using a third-degree polynomial 
regression; - - ,  the current model 

equation for g' calculation: 

log g' = log [q]b-- log [q]L (1 1) 

from equation (9). 
By using equations (7)--(10), we calculate the long-chain 

branching frequency 2 ( = n / M ) .  Figure 7 shows the 
calculated results. The agreement is again quite good. 
Using the same exponent value of 1.2, the 2 value 
decreases continuously, and when the exponent is close 
to 1, it approaches a constant value. However, the 2 value 
is in a reasonable range regardless of x value. Lecacheux 
et al.'s calculation shows no significant change of ~. value 
with molecular weight, 2 having a constant value of about 
0.3 x 10 -4 at high molecular weight s. Depending on the 
experimental conditions and data analysis, however, the 
trend can be varied as shown in Figure 7. When x is 0.5, 
which is the value for randomly branched polymers in the 
Zimm-Kilb model, 2 increases with molecular weight 
rather than decreasing. 

Recently, Jin and Guo ~9 reported the long-chain 
branching frequency of polyethylene. Following the 
Ram-Miltz scheme 5, they used the Mark-Houwink 
relationship for the linear polymer and a third-order 
polynomial when the data deviated from the linear rela- 
tionship with log M, which requires numerical decision 
of the threshold molecular weight Mo, at which the 
intrinsic viscosity starts to deviate from the linear 
relationship. The current model does not need pre- 
determination of Mo, which is a considerable advantage 
for correct 2 estimation. The reported 2 value was on the 
order of 10 -4 , which is close to our value. However, when 
x is equal to 0.5, which was the value used by Jin and 
Guo, 2 increases with molecular weight rather than 

decreasing, as shown in Figure 7. Jackson 14 also reported 
a 2 value of 0 .25x10 -4 . The order of 2 in other 
experimental data coincides with our result. 

As Lecacheux et al. mentioned, it is certain that a 
particular calculation process can change the 2 value. As 
shown in Figure 7, however, the order of magnitude in 
different cases remains the same. Therefore, the current 
model works well for branched polymer characterization 
as well as linear polymer characterization. 

The current model can also be used for the M W D  
determination of branched polymers. For  a given fraction 
i in a g.p.c, chromatogram, the relationship between the 
molecular weights of linear and branched polymers 
should conform with the universal calibration, i.e.: 

[tl]lin.iMlin, i = [q] br,iMbr,i (12) 

since the product [ q ] M  of a polymer chain in solution 
is directly proportional to the hydrodynamic volume of 
the equivalent sphere 1. Taking the logarithm of equation 
(12) gives: 

log Mb~,i = log [q]lind - -  log It/] br,i "Jr -  log Mlin, i (13) 
Combining equations (4) and (13), we have: 

log Mbr,i = m'l t an-  1 [log(Mlinjm~)] + m~ 

-- m 1 tan-  1 [ log(Mbjm2)]  

- -  m 3 + log Mlin, i (14) 

For  the first-order calculation we get: 

log Mbr,i 
(m'x + 1) log Mlin,~ + m'x log m~ -- m 1 log m2 + m~ -- m 3 

(m 1 + 1) 
(15) 

For  a more accurate calculation, Mbf,~ obtained from 
equation (15) is inserted into equation (14) and the 
calculation is repeated three or four times until the value 
converges. The weight and number average molecular 
weights are calculated as follows: 

Mw = ~ (W~Mb,,,) (16) 

A~. = 1/~  (W.JMbr,i) (17) 

where W~ is the weight fraction of i. As an example, the 
molecular weight distribution of polyethylene reported 
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Figure 7 Plot of long-chain branching frequency 2 versus molecular 
weight: O, Lecacheux et al.'s calculation s, Lines represent the current 
model predictions for:-- -, x = 1.2; . . . . .  , x = 1.1; ...... , x = 1.0; - - - ,  
x=0.5 
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Figure 8 Molecular weight distribution of polyethylene (PE-76): - - ,  
Ram and Miltz calculationS; - - ,  the current model calculation 

by Ram and Miltz 5 is recalculated as shown in Figure 8. 
Generally, the agreement with the third-order calculation 
is rather satisfactory. A slight deviation is observed in 
the high molecular weight portion. This deviation affects 
the calculated values of M ,  but has very little effect on 
the value of M,. Calculation of M, by the proposed 
method yields 13 000, which is smaller than the third- 
degree calculation of Ram and Miltz but quite close to 
the measured value of 13 300. Even though M ,  is not 
calculated because we do not have exact distribution 
data, we can see from Figure 8 that the current model 
will give a higher MI  value than that obtained by the 
third-degree polynomial calculation. 

From its explicit form, equation (4), two different 
shapes of the intrinsic viscosity behaviour can be 
described. The first is the approach of the lower part of 
the sigmoidal shape and the second is the approach of 
the upper part of the sigmoidal shape 2°. Generally, 
flexible chains with backbones of small diameter, per- 
mitting closer approach of the chain units and greater 
flexibility, follow the lower part of the sigmoidal shape, 
i.e. their approach to the power-law region takes place 
from above, with larger values of [r/] than those of the 
power law as shown in Figure 1. On the other hand, rigid 
chains with wider backbone diameters approach the 
power-law region from below, with smaller values of [~/] 
than those of the power law. The two different behaviours 
are explained by means of the interactions between the 
units of the chain 2°. Owing to its natural shape, equation 
(4) is flexible enough to fit both cases. This behaviour is 
related to the shifting of the curve inversion point. 
Depending on the m2 value, approaches from both 
directions are possible. 

CONCLUSION 

Based on the rheological behaviour of polymers, we 
proposed a new equation having the form of an inverse 

tangent function of log M to correlate intrinsic viscosity. 
It is quite versatile, describing not only the intrinsic 
viscosity behaviour of both flexible and rigid chains but 
also the molecular weight distribution of branched 
polymers. Good agreement of intrinsic viscosity values 
between the proposed model and experimental data was 
observed for both linear and branched polymer solutions. 
Using the proposed model, long-chain branching fre- 
quency was calculated and found to be in good agreement 
with values reported by Lecacheux et al. 

Compared to the conventional Ram-Miltz method for 
long-chain branching frequency calculation, the current 
model does not need predetermination of the threshold 
molecular weight Mo for a given polymer, nor higher- 
order terms to compensate for the deviation from the 
linear relationship. Even though the long-chain branching 
frequency value is quite sensitive to the calculation 
process, its order of magnitude always remains in a 
reasonable range. 

When used with g.p.c, chromatograms and the measured 
values of the intrinsic viscosity of the whole polymer, the 
current model will be useful for rapid and accurate 
evaluation of the long-chain branching frequency in 
polymers, as well as for proper evaluation of molecular 
weight distribution. 
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